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Abstract - Filtering SAR imagery for the purposes of speckle
reduction, and feature or information extraction is a re-occurring
subject area in microwave remote sensing. Existing classical
techniques such as pixel averaging, median filtering, pyramidal
filtering, etc., are often accompanied by troubling performance
tradeoffs depending on the application. In this work a novel filtering
method based on coherent frame theory is described and exercised
on a SAR ship wake image. The method is demonstrated to be a
unique and potentially powerful analytical tool for SAR image
analysis. Two different types of coherent frames are studied related
to applications of the Weyl-Heisenberg and affine or wavelet groups
used in quantum physics to describe atomic coherent states. In both
cases the particular coherent frames selected consist of frame
elements having simultaneous localization in phase space which
satisfies the lower limit of the uncertainty principle. Using frames of
this type are ideal for the representation of waveforms which arise
from nonstationary processes.

Introduction

There are a number of approaches that may be taken to extract
information directly from SAR ocean imagery. In this paper we first
decompose the SAR ocean image in terms of "fundamental”
elements, and then perform a limited reconstruction that results in a
filtered image. Since the SAR ocean image is formed from data
originating from a nonstationary scene (process), it is desirable to
decompose the image into fundamental elements which have
optimum simultaneous localization (OSL) in phase space. Note that
the term “optimum" is used in the sense that the lower limit of the
uncertainty principle is satisfied, and phase space is the two
dimensional space-wavenumber or time-frequency space. It is well
known that if a waveform is to have the OSL property it must be
based on a Gaussian function. The decomposition and
reconstruction of an image in terms of fundamental elements of this
type present some serious numerical difficulties because the
elements are cross coupled. The cross coupling can be handled with
use of coherent frame concepts. Daubechies was the first to
recognize the usefulness of frame concepts and used them to unify
both a Weyl-Heisenberg and affine or wavelet type of discrete
localized time-frequency analysis [1]. In general, a Weyl-
Heisenberg frame consists of frame elements that are related by
translation and modulation, and the wavelet frame consists of frame
elements which are related by translation and dilation. Both frames
can be generated by a single "mother" function. The OSL property
in the Weyl-Heisenberg case leads to the use of the Gabor
transform, and was investigated in [2]. The affine case uses the
wavelet transform with a modulated Gaussian wavelet as its mother
function and was investigated in [3]. Our earlier work discussed the
potential application of these frame representations for filtering and
here we exercise a specific filtering algorithm. A very brief
discussion of the relevant theory is also included.

Theory and Computational Procedure

Each frame allows the exact representation of waveforms f which
are members of the Hilbert space #spanned by the frame. Note that
a frame is generally not a basis for the space it spans, since when
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expressed in the form of a complete irreducible set, the number of
frame elements may be larger than the dimension of the space. In
many cases however, a frame may reduce to a simple basis. The
specific frames used in this work are not a basis since the frame
elements are required to have the OSL property. The cost paid for
using a frame which is not a basis is the numerical construction of
the associated dual frame needed to complete the frame
decomposition and reconstruction process. A frame representation
for'a waveform fis mathematically stated

Ve f=X Va<VaS> (D

where {y,} and {\~|Jn} are the original and dual frames, respectively;

and n € J, a denumerable set. From frame theory, the dual frame
elements are found from the operator equation
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where B 2 A > 0, are the frame bounds. If A = B the frame is said
to be tight and the closer A is to B, the faster the convergence in (2).
For both the Weyl-Heisenberg and the wavelet frames the snugness
can be adjusted by oversampling, but the details are somewhat
different. In this work four times oversampling is used with each
type of frame resulting in extremely snug frames. A more detailed
discussion is given in [1] where the frame bounds are computed for
different cases. For the Weyl-Heisenberg case the frame elements
are related by translation and modulation expressed as

Ean(X) = g(x — ngg) e™F%, 3

where to realize the OSL property, the Gaussian mother function
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is used. For four times oversampling poqo = /2, and with qp = 1
the frame bounds are A = 3.854 and B = 4.147 [1]. For the wavelet
case the frame elements are related by translation and dilation
expressed as

gra()=ay 7 g(+a;™ x — nby) 5)

where to realize the OSL property here, the modulated Gaussian
mother function
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is used. The £ sign in (5) designates the positive and negative
frequency half spaces which must be handled separately [1,3], and

¥ = 7(2/In2)%5, Oversampling in the Wavelet case is introduced in
frequency only through dilation expressed as

A L1
g(®=2 N glag NX) ™
where A = 0,..., N-1 for N times oversampling. With N = 4, a, =
2, and bg= 1 the frame bounds are A = 6.918 and B = 6.923 [1]. To
use (3) or (5) with (1) and (2) the number of summations are
increased to account for the indices. The magnitude of the standard
L2(R) inner products < g, (x), Ax) > given in (1) indicate the
coupling of Ax) to the coherent states defined by {gmp). and the
complete set represents a unique phase space signature. For each of
the frames used here a range of (m, n) is selected to ensure
reconstruction with negligible error when all the frame elements are
used. The {gn} are projected onto the image azimuth cuts (direction
of SAR formation) to represent the image in phase space. The filter
responses are obtained by identifying coherent states with large
information present and performing limited reconstruction. A
minimum mean square error or percent power recovered at the filter
output is used for the filter performance criteria. A filtered response
is then obtained by limiting the reconstruction to dominant frame
contributions.

SAR Ocean Image Filtering

In this section frame filtering is performed on a SAR ocean image of
a torn ship wake using both the Weyl-Heisenberg and Wavelet
frames previously discussed. The image was provided by the Naval
Air Warfare Center, Aircraft Division Warminster (NAWC/ADW)
SAR image processing facility from experiments conducted off the
east coast of the United States during the Fall of 1988. The image
was formed from C-Band data collected at VV polarization and is
shown in Figure 1. The dominant features represent a ship wake
torn from conflicting velocity fields present on the ocean surface.
The image size is (down range x cross range) = (201 x 402) pixels,
and the pixel dimensions are (range, azimuth) = (2.5, 2.16) meters.

Figure 1: Original SAR image (C-Band VV polarization).

To first illustrate the filtering performance, consider the
reconstructed azimuth cut shown in Figure 2 taken from the lower
edge of the original image. Figure 2(a) shows both an almost perfect
reconstruction by the dotted line, and a filtered cut superimposed by
the solid line using the Weyl-Heisenberg frame. The almost perfect
reconstruction uses 1,474 terms to recover 99% of the original
power. The corresponding mean square error is approximately
0.06%. The filtered cut uses only 77 terms to provide 75% of the
original power. Figure 2(b)-(c) shows the corresponding rate of
power recovery and reduction in mean square error as a function of
the number of terms used in the reconstruction. The dominant
waveform feature efficiently preserved in the filtered response
demonstrates the OSL property of the Weyl-Heisenberg frame used.
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Figure 2(a): Original (dotted) and filtered (solid) azimuth cut (Weyl-Heisenberg case).
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Figure 2(b): Filter recovered power efficiency (Weyl-Heisenberg case).
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Figure 2(c): Mean square error at the filter output (Weyl-Heisenberg case).

Similar results are shown in Figure 3 using the wavelet frame. Here
the almost perfect reconstruction uses 2,390 terms to recover 90%
of the original power with corresponding mean square error of
approximately 2.32%. The filtered cut uses 431 terms to recover
75%. Figure 3(b)-(c) shows the corresponding rate of power
recovery and reduction in mean square error. As in the Weyl-
Heisenberg case, the filtered response shows the efficient
preservation of the waveform's dominant features resulting from the
OSL property of the wavelet frame used. These examples illustrate
the convergence properties of the filtering algorithm with both
frames, and demonstrate the filter response is an approximation to
its input.
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Figure 3(a): Original (dotted) and filtered (solid) azimuth cut (wavelet case).
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Figure 3(b): Filter recovered power efficiency (wavelet case).
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Figure 3(c): Mean square error at the filter output (wavelet case).

The filter algorithm can be applied to either one or both of the
original image's linear dimensions. for the results shown here the
filter is applied in the azimuth dimension. The results using the
Weyl-Heisenberg frame are shown in Figure 4. It should be
immediately apparent that the weak feature present in the original
image is well maintained using far less data. Similarly, the results
using the wavelet frame shown in Figure 5 demonstrate less data
being needed to reasonably maintain the original feature information.
For both results the power recovered is 50% of the original image of
Figure 1. In the Weyl-Heisenberg case less than 10% of the data in
the original image is used. The wavelet case uses less than 39% of
the data in the original image, and although it requires more than the
Weyl-Heisenberg case, it is still a significant reduction. The
additional data arises from the difficulty that the wavelet analysis has
in representing very low frequency information [3]. Note that from
(6) it can be deduced that wavelet decompositions contain no terms
that are DC-coupled (mapped precisely centered around zero
frequency) which explains this difficulty.
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Figure 4: Filtered SAR image (Weyl-Heisenberg case).

Figure S: Filtered SAR image (wavelet case).
Conclusions

The image information in azimuth (direction of SAR formation) is
projected onto the discrete lattice locations in phase space with
localization properties that meet the lower limit of the uncertainty
principle. The filter responses are obtained by identifying lattice
locations with large information present and performing a limited
reconstruction. A minimum mean square eIror or percent power
recovered at the filter output is used for the filter performance
criteria. The procedure is both numerically tractable and stable once
the dual frame in (2) has been constructed. The filtered image results
in Figures 4 and 5 both represent a significant reduction in the data
being required to retain the dominant image features. The two
filtered images illustrate how the filter's response differs for each
frame. The difference is a result of the particular frequency
partitioning associated with the original image's representation on
each frame. The filtered imagery shows that sharp edges are more
efficiently represented on the wavelet frame, whereas the Weyl-
Heisenberg frame is more efficient at representing slowly varying
low frequency image features. Together, both types of frames when
constructed to have the OSL property are felt not only to effectively
remove speckle artifacts, but also to contain the necessary
information for enhanced feature detection, extraction and
identification.
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