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of CPD), it is much better than both F and ML. For
example, for a CPD of 0.1, the RMSE of EB(2) is
smaller than that of either F or ML by about 15% of
the quantity being estimated. EB(2) remains reliable
for CPD values down to about 0.05 . Hence, its reliable
region is larger than that of either F or ML. HYB is
better than both F and ML.

IV.  CONCLUSIONS

The ML is a uniformly minimum variance unbiased
estimator for P, but we have formulated a biased
estimator which is better in the MMSE sense. This
hybrid estimator combines the estimates from an
empirical Bayes estimator and a jackknifed Bayes
estimator.

The only paper that we are aware of, which
explicitly addresses the problem investigated here, and
which suggests an alternative to F for estimating the
CPD of surveillance radars is [1]. We now have three
competing estimators which may be used instead of E
Their performances are summarized, in terms of their
improvements over F, in Fig. 5.

In [1], the construction of exact confidence
intervals for F and approximate confidence intervals
for ML was also addressed. Since EB(2) and HYB are
complex functions of D as well as biased, it is difficult

to construct confidence intervals for them. One way to
approximate such confidence intervals may be through
the use of bootstrap methods [4]. This possibility will
be studied in a follow-up investigation.
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A Multifeature Decision Space Approach to Radar
Target Identification

This work focuses on the use of actnal radar sensof data to
construct a multifeature decision space formulation to lhe target
identification (TID) problem. The decision space concepts are
classical and the basic target features used can be extracted from
the data provided by standard radar sensor operating modes.

The target features used in the decision process along with the
construction of a useful statistical description of each feature for a
given target are presented. A multidimensional formulation of the
decision space and the decision logic is also presented leading to a
versatile multifeatore based algorithm. The algorithm performance

has been evaluated on live data and the results are reported.
. INTRODUCTION
The importance of having an airborne target

identification (TID) capability for military and
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commercial applications is easily established by
considering the Iranian air bus tragedy over the
Persian Gulf in 1988 [1]. The task of identifying an
airborne target uniquely from radar sensor information
is very challenging. It is for this reason that mulitiple
target features are used within a common statistical
framework to reliably and robustly provide a usable
airborne TID capability. The performance of any
statistical identification process that is phenomena
driven relies on both the quality of the discriminants
as provided by the sensing system, and the correct
interpretation of their physical significance.

The general model for the TID problem used in
this work is shown in Fig. 1. The model is considered
to be general because it can readily accommodate
the use of multiple sensors. The sensor suite can
be a combination of active, passive, distributed, and
colocated sensors that together cover a broad spectral
band chosen to exploit a range of target characteristics.
In addition, individual channel effects associated with
the operation of each sensor must be accounted for in
the decision process. The data received by the sensor
suite is processed to extract target features using
appropriately chosen measures. Many researchers are
actively pursuing useful solution concepts addressing
different aspects of the general TID problem shown
in Fig. 1 [2-4]. Note that target feature extraction is
typically the most processing-intensive step of the TID
problem, and processor hardware requirements can
vary considerably for real-time implementation of
different TID solution concepts. The target features
extracted from the sensor suite are combined to form a
single multi-dimensional feature vector ¥. The feature
vector is then mapped into a decision space (that
resides in computer memory) and a particular target
is declared. A classical Bayesian Decision Rule (BDR)
is used, and a suitably sized sliding set of declarations
can be treated as being made up of independent trials
that can be subsequently combined as a Bernoulli
experiment [5-7]. However, the Bernoulli trial stage
of the decision process is time line driven, and
emphasis is appropriately placed on the single trial
declaration performance. The statistical confidence
of the target declaration is of prime importance,
and there are numerous places for error to enter the
decision process. For example, decision error can arise
from any combination of a poor understanding of

CORRESPONDENCE
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extraction

General model for TID problem.

target phenomenology, channel effects not taken into
account, poor real-time sensor measurement fidelity,
poor feature extraction processing performance, and an
incorrectly constructed decision space.

The primary thrust of this work focuses on a
formidable subset of the TID tsk that involves the
use of a single monostatic radar sensor {active and
colocated) opening at X-Band. Depending upon the
radar’s specific operating parameters that include
the antenna transfer function, transmit waveform
(modulation type, pulse-repetition frequency (PRF),
etc.) and coherent burst characteristics, a number of
discriminating target features can be extracted from
the received data. The use of target features that are
not based on high resolution Doppler spectra was of
particular interest in this work. The specific target
feature baseline consists of target radar cross section
(RCS) [8], length, two spectral features extracted from
jet engine modulation (JEM) [9], and target velocity
and altitude. Together, these features are combined to
form a 6-dimensional feature over ¥. The subsequent
sections describe the data-intensive construction of
the decision space that consists of 26 targets, the
formation and implementation of the BDR, and the
performance obtained from a live target near real-time
demonstration. In addition, the combined feature
discriminant contribution with statistical description
and data integrity are investigated through examining
the decision space target partitioning. The relative
importance of the different target features in the
overall decision process is also examined. Suggestions
for additional radar sensor derived discriminants to
further enhance TID performance are provided in the
concluding remarks.

Il. DECISION SPACE CONSTRUCTION

The decision space construction is based on
classical concepts that are commonly used in pattern
recognition applications. A detailed discussion is
given by Fukunaga [5]. This section outlines how
these concepts have been applied to the TID problem
described in Fig. 1.

To construct an ideal decision space, the elements
of the feature vector ¥ must together establish disjoint
regions to exactly partition the N hypothesis (N is
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TABLE I
Feature Vector Elements (Discriminants) and Their pdfs

Target Feature  Notation  Probability Density Function

RCS & B-density/empirical

length & trapezoidal/empirical

JEM1 & trapezoidal/empirical

JEM2 & trapezoidalfe mpirical
velocity &s piece-wise uniform/empirical
altirude & piece-wise uniform/empirical

the total number of targets) TID problem. The M
element feature vector (M -tuple of real numbers)
is defined as ¥ = [¢; & --- &m]? where each of the
&, represents a particular target discriminant. For
the TID problem, let the outcome €2, correspond
to a declaration “target ¢,” with a probability P(c,,)
where the subscript n denotes the nth target out of the
possible {0,; n =1,...,N}. The classical model for
this situation is shown in Fig. 2.

Utilizing the elements of the feature vector
explicitly, the €,, outcome can be expressed as the
joint intersection given by

M
Qn = ( N Qﬁm) (1)

m=1

where Qﬁ"‘ are the individual outcomes resulting from
each of the target discriminants &,,. The overall quality
of the decision space resulting from the set of features
contained in ¥, and the value added provided by the
inclusion of each &, should be statistically quantified,
and for some targets

M ‘ M’ '
sz,,:(ﬂszgm): ek ): M <m
m=1 m=1 (2)

The value of each discriminant &, in the TID decision
process implied by condition (2) is important when
selecting useful discriminants, and deciding appropriate
feature weighting schemes to exploit the relative
importance of individual features for a particular
target. To allow importance weighting to be utilized,
conditional decision subspaces must be constructed
whose members are of equal importance.

The decision space (or decision subspace)
construction requires individual statistical descriptions

of each discriminant ¢, in the feature vector, and
consequently requires the formulation of a joint
probability density function (pdf) for each target. From
practical considerations the individual target features
are assumed to be independent and the conditional
feature vector pdfs f,, (V| 0,) for each target take the
form

FF101) = for(P) = for(€2) -+ forr (En1)
M
= [[ for &)

m=1

f@lo2) = fo,(%) = fo,(&2) - fo, (Em)

M
=[] fr.(&m) 3)

m=1

FFoN) = fon(P) = fon(€2) - fon (En)
M
=11 fon &)
“m=1

where the &,, have different conditional pdfs f,, (¢n),
some of which may not have parametric forms. Note
that joint statistical independence among the &, is

a valid assumption based on physical and practical
considerations. The generalized decision space is
constructed from the N conditional M -dimensional
pdfs given by (3) for the case of equally important
elements of the feature vector.

The decision space details that remain pertain
directly to the {{,, : m =1,...,M} and their
corresponding pdfs for the total number of targets
in the data base. The decision space constructed for
this work contains a combination of commercial and
military aircraft totaling N = 26 targets. Each target is
characterized using M = 6 independent discriminants.
The target discriminants and their corresponding
pdfs are listed in Table I. The RCS discriminant is
constructed from compiled measured data, and can be
expressed parametrically as a J-density [8]. The JEM1
and JEM2 discriminants are based on spectral features
extracted from jet engine modulation signatures, and
each are taken have trapezoidal densities that are
parameterized for individual targets using previously
measured and analyzed JEM spectrum data. The target
length discriminant is taken to have a trapezoidal
distribution that is parameterized using known physical
information. The velocity and altitude discriminants are
assumed to have piece-wise uniform distributions that
are parameterized from operational data.

. BAYESIAN DECISION RULE FORMULATION

The decision rule for the TID problem is classical
and detailed discussions can be found in many texts
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(e.g. [5])- Using total probability and Bayes’ Theorem
for equally important feature vector elements, the
decision rule follows from maximizing the probability

f@07) _ P@)fra(7)

P(o, | V) = — -
=Ty T ) @
for some n =i to declare o;, where
N
F) =Y P00 fo,(7) )

n=1

is a constant. Note that ¥° designates a particular
feature vector ¥ measured by the sensing system.
Equation (§) implies that events Q,, that correspond
to declarations o, partition the decision space. From
(4) the BDR can be expressed explicitly as

max(P(0,)fr, (V")) — 1 = declare o; (6)

where the maximization of P(c,)f,, (V) occurs for
some n =i indicating the event ;, and corresponds
to declaring target o;. Note that single outcome
evaluation of (6) is straight forward, and in practice
it is desirable to rank all possible target declarations
in decreasing probability. Thus, (6) can be repeatably
evaluated a total of N — 1 times where successive
computations omit previous declarations. When
relative importance weighting among the elements of
the feature vector is utilized, separate decision rules
must be formulated for each decision subspace. The
steps are identical to the case of equal importance
weighting except that a partitioned feature vector is
used (see [5] for more details).

IV. ALGORITHM IMPLEMENTATION AND RESULTS

The TID algorithm was implemented according
to (6) with P(0,) = N~! and demonstrated in near
real-time using an airborne AWG-10 (APG-59)
radar system operated on a rooftop at the Naval Air
Warfare Center Aircraft Division, Warminster, PA in
September 1993. The AWG-10 is a high PRF pulse
Doppler X-Band radar system that has undergone
modifications to provide access to radar signal and
tracking information. In addition, external circuitry
to perform target length measurement using the
leading and trailing edge of the radar return was
developed. The TID algorithm is hosted on a 486-PC
that accepts radar information via 3 analog-to-digital
(A/D) converter boards. In addition, the 486-PC
also controls data collection to allow time-on-target
and frame time to match the coherent processing
interval (CPI) of typical surveillance or tracking radars.
For the results presented in this work the radar was
operating at a PRF = 300 KHz with a time-on-target
of 8 ms within a frame time of 100 ms that was
repeated for 5 s defining a single CPI1. The CPI of
the radar is illustrated schematically in Fig. 3. A live
TID demonstration was conducted with a cooperative
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Repeat for 5 seconds (50 frames) =1 CPI
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Fig. 3. AWG-10 radar CPI for near real-time TID demonstration.
TABLE 11
TID Algorithm Performance for an F-18 Aircraft

Rank Percentage of 29 CPIs
Top 1 3%
Top 2 7 %
Top 3-4 4 %
Top 5 62 %
Top 6 90 %
Top 7-8 97 %
Top 9-13 100 %

F-18 aircraft. The duration of the target engagement
consisted of 29 consecutive CPIs.

Note that because of the high PRF and the radar
and stepped-frequency waveform limitations, the target
length measurement required additional circuitry and
a separate measurement using the 1 KHz pulse mode
of the AWG 10. Unfortunately, the required length
measurement circuitry was not working properly during
the near real-time demonstration, and was unavailable
for inclusion in the feature vector and subsequent
TID processing. Thus, all results are based on V =
[&1 « & & &5 &6)T, ie., the use of & is omitted.

In addition, the radar was also suffering some
intermittent FM ranging problems that caused

radar data cbrruption. However, despite hardware
difficulties very good live results were obtained for

a high percentage of CPIs. The overall results for

an F-18 aircraft are summarized in Table II where
the performance of the algorithm is determined

by a percentage of 29 CPIs corresponding to a
particular ranking within the decision space. Note
that the results shown in Table II must be interpreted
carefully, and were intentionally compiled to
illustrate a conservative performance picture of the
TID decision space/algorithm. Inspection of the
individual CPI results suggest that the Bayes error
(decision space distance) between the F-18 aircraft
discriminant pdfs and the corresponding adjacent
incorrect declaration pdfs are relatively small, i.c., the
ranking in Table II shows groupings where aircraft
declarations were comparable for that percentage

of the 29 CPIs. For example, the Top 6 ranking
corresponds to the F-18 aircraft being among the 6
aircraft (out of the 26 aircraft) identified 90% of the
time. Rankings in Table II correspond to cases where
the feature vector, when projected into the decision
space, falls into regions where the distinction between
adjacent target declarations is difficult to resolve.
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The use of decision space pdfs with better fidelity in
combination with appropriate importance weighting
(a priori probabilitics) among the elements of the
feature vector would lead to improved performance.
The 3% result is shown in Fig. 4 where the F-18
aircraft is shown highlighted along with the remaining
25 aircraft in the decision space.

Figs. 5-9 illustratc the performance of the
algorithm with respect to each discriminant in the
feature vector along with the complimentary set of
discriminants for the F-18 aircraft result in Fig. 4.
For all results marginal pdfs are used to examine
the performance associated with the individual
components of the feature vector (this situation is
represented by (2)). For example, Fig. 5(a) shows the
TID performance without the use of RCS information,
and Fig. 5(b) shows the TID performance using
only RCS information for the F-18 aircraft. Note
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that after the demonstration, it was determined that
radar calibration errors and FM ranging problems
were inhibiting the value of RCS information in TID
algorithm. Off-line reprocessing is expected to show
performance improvement over the result given in
Fig. 5(b). Figs. 6(a) and (b) illustrate the TID results
for JEM1. Fig. 6(b) indicates that JEM1 appears to
be a good discriminant for an F-18. Figs. 7(a) and

(b) illustrate the TID results for JEM2. Fig. 7(b)
indicates that JEM2 was not a high value discriminant
for F-18 identification. This result is not surprising
because the primarily value of JEM2 is to distinguish
jet versus propeller engine types. Figs. 8(a) and (b)
illustrate the TID results for target velocity. Fig. 8(b)
indicates that velocity information played a minor role
in identifying the F-18 aircraft. Note that Fig. 8(b)
does not necessarily devalue velocity information

for F-18 aircraft identification. The results simply
indicate that for this engagement, velocity did not play
a significant role in the TID algorithm performance.
Figs. 9(a) and (b) illustrate the TID results for

target altitude. Fig. 9(b) indicates that altitude had a
modest role in the F-18 identification where a distinct
separation between military and commercial aircraft
was obtained.

V. CONCLUSIONS

The TID problem has been treated as a gencralized
multidimensional decision process based on statistical
representations of target discriminants that are
observed by a sensor or sensor suite. The classical
BDR formulation is extremely versatile and can readily
accommodate a large number of discriminants [5]. In
addition, the basic target discriminant information
(pdfs) can be augmented with target and/or situation
dependent a priori importance weighting that is
cither fixed or adaptive to enhance TID performance.
The TID algorithm has been tested in real-time
using a modified AWG10 radar with selected target
discriminants that can be extracted from CPIs that are
typical of modern surveillance and tracking radars. The
testing portion of this work served to both validate the
multifeature decision space algorithm, and examine
the quality of a basic set of target discriminants. The
live TID algorithm performance with the selected
target discriminants is very modest, but encouraging
despite the hardware difficulties. (In particular, the
Top 6 ranking in Table II corresponds to the F-18
aircraft being among the 6 out of the 26 aircraft
identified 90% of the time.) Examination of the
benefit provided by the individual discriminants show
that expected performance can deviate significantly
from what is achieved in actual target engagement
scenarios. The overall results clearly indicate the
nced for better target discriminants. The appropriate
selection of target discriminants is generally driven
by the limitations of the sensing system. For radar

sensors, the use of sophisticated discriminants generally
requires the combination fo waveform selection and
specialized processing to exploit particular target
scattering characteristics. For example, target RCS

as a function of carrier frequency and angle of
illumination is a relatively basic case [10]. Highly
analytical research in target scattering phenomenology
indicates that target natural resonance extraction [11]
and polarimetric signatures [12] are excellent target
discriminants. Furthermore, information extraction
techniques that are optimally matched to nonstationary
target characteristics are also likely to play a role in
the selection and refinement target discriminants [13].
In all cases, the generalized multifeature decision space
approach presented here allows target discriminants to
be utilized within a single unified TID algorithm.
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A General Approach to TMA Observability from
Angle and Frequency Measurements

The state-observability problem for passive target tracking by
angle and/or frequency measurements is analyzed. The method
used is independent of the target model and can be specialized to
arbitrary models in a systematic way. As an example, the general
Nth-order dynamics target model has been discussed. In this way
the previously established necessary and sufficient observability
conditions are rederived in a much simpler way and extended to

more general cases.

. INTRODUCTION

Passive emitter state estimation (commonly referred
to as target motion analysis (TMA)) is a widely
investigated problem of practical interest. A particular
interesting case arises when all measurements are
derived from a single moving observer. Suitable data
are in principle all measurements which are functions
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of the target state. In this work the observer-to-target
angles and the Doppler-shifted emitter frequency are
considered.

A basic requirement for TMA is system
observability, i.e., the existence of a unique tracking
solution. If only angle measurements are available, it is
well known that target state observability is warranted
only under specific conditions. The conditions change,
if other types of data (e.g., the Doppler-shifted signal
frequency) are used. In practice, precise knowledge of
these conditions is of fundamental importance since
reliable estimations can be obtained only if the target
state is completely observable.

In the literature the observability problem from
angle and frequency measurements has been discussed
in several papers. All papers start from a finite
dynamics target model and differ by the method used
or by the degree of target dynamics.

In case of angle measurements only, two essentially
different approaches to the solution of the TMA
observability problem have been made. The first
takes advantage of the fact that the system though
intrinsically nonlinear can be recast in linear form
which allows direct application of theorems from
the well-known classical theory of observability in
linear systems. In this way the constant velocity target
(first-order dynamics) case has been studied in detail
in two [1] and three [2] dimensions. The specific
observability criterion thereby used, however, leads
to complicated nonlinear differential equations. Some
tedious mathematics are needed for the solution, giving
conditions that are necessary for system observability.
Starting from another but equivalent criterion
complicated nonlinear differential equations can be
avoided. This was done in [3-5], yiclding necessary and
sufficient observability conditions for two-dimensional
first-order [3), three-dimensional second-order [4],
and gencral three-dimensional Nth-order [5] dynamics
targets, respectively. '

The second approach avoids analyzing an
observability matrix and solves the observabilty
problem for the general three-dimensional Nth-order
dynamics target case via establishing an equivalent
uniqueness criterion for an associated functional
equation [6].

Observability from the combined set of angle and
frequency measurements has been investigated in
[4, 7, and 8]. As in the case of angle measurements
only, the nonlinear equations can be recast in linear
form by a judicious choice of variables. Based on the
criterion used in [3-5], necessary and sufficient
observability conditions have been established for
two-dimensional first-order dynamics targets and
stationary obscrvers.

If only frequency measurements are available
the system equations cannot be recast in equivalent
linear form. The nonlinearities suggest an observability
analysis based on the Jacobian matrix of the pertinent
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