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(see [2], [3]) the bifurcations occur most clearly when Ka = 0.3 —
0.5. Therefore, the interpretation of microwave data of ATg(Ka, N)
in the range 0 < Ka < 0.5 is based on the one-dimensional model
(4). If Ka ~ 0.5-1.0 we can consider the microwave model in
which the free surface has the form, for example,

@)= Y Aum(K: K,)cos(nEsx + ¢n) cos(mKyy)

n=0m=0
(©)

where K, and K, are the wave numbers. In this case, the cross
polarized contribution to microwave emission of the large-scale
surface must be taken into account, a problem which requires special
calculations.
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SAR Ocean Image Decomposition
Using the Gabor Expansion

J. G. Teti, Jr. and H. N. Kritikos

Abstract—This paper demonstrates the utility of the Gabor expansion
as a new tool in geophysical research. The Gabor expansion provides
good time-frequency (or space-wavenumber) localization and is ideally
suited to represent monstationary processes. The properties of this tool
are demonstrated by expanding an FM-chirp waveform, and azimuth
cuts taken from two different SAR ocean images. The effects of filtering
in Gabor phase space are also investigated.
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[. INTRODUCTION

The advantages of identifying and/or constructing signals or func-
tions with both time and frequency localization has been of interest to
the remote sensing community. Such examples include SAR imaging
of a nonuniform ocean [5], transient analysis of lightning [7], etc.. An
expansion having these properties can provide a numerically efficient
representation of dominant image features. Bastiaans [1] is perhaps
the earliest researcher to give recent attention to the expansion of a
signal into Gaussian elementary signals, a concept first discussed by
Gabor [4]. Bastiaans computed the bi-orthogonal basis corresponding
to the Gabor function which stimulated renewed interest in the use of
the Gabor expansion [6]. The initial attempts to expand a waveform
were found to have poor convergence because of numerical instability
caused by singularities present in the solution [3]. Daubechies [3] has
successfully addressed this problem by considering an oversampled
lattice in phase space. She has also laid out much of the mathematical
groundwork needed to carry out such an expansion and her work
forms a basis from which the tools utilized in this paper have evolved.
The understanding of a “frame” is perhaps the key concept required to
appreciate the use of these tools and a brief development is presented
following Daubechies [3].

II. MATHEMATICAL PRELIMINARIES

A. The Gabor Expansion

To properly define a frame it is necessary to begin with functions
f defined on the Banach space L?(IR). The Banach space L*(IR) is
the normed vector space defined as

PRy =1 / |fla)Pdx < 50 M
R

with the norm

N

17l = | [1r@ras @
R

where the subscript 2 is typically omitted. The Hilbert space H
is an inner product space in which every Cauchy sequence {¥.,}
converges, and is also a Banach space. A sequence {¥ } in a Hilbert
space H defines a frame if there exist numbers A, B > 0 such that

VieEH, AlfIP <Y 1< f>P <BIT O

where the numbers A, B represent the frame bounds. If A = B the
frame is tight; if A ~ B the frame is said to be snug. Furthermore,
a frame is exact if the deletion of any single frame element causes
the remaining set of elements to no longer represent a frame. An
exact frame is an irreducible set {¥,, } which forms a sequence that
satisfies (3). This statement is somewhat analogous to the requirement
of completeness for an orthonormal basis. A complete orthonormal
basis is an exact frame; however, the converse is not true in general.
Following Daubechies [3], from (3) a frame operator 7 and its adjoint
7* may be defined where

A1<T'T < Bl @

and since A, B > 0, the inverse of this operator must exist and
satisfy the relation
Z1<(T ) < 1 ®)

pa| =
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Fig. 1. (a) Re[gmn] = 800 and Re[geg] shown. (b) Re[gmn] = 8o and Re[ggo]
shown.

where 1 is the identity operator. With
¥, 2 (T, =Ty, (6)

{¥.} constitutes a “dual” or “complimentary” frame with frame
bounds A™!, B™' > 0 and the operator T = 7*7T is found to be

T= i\pn<wnﬁ>. )

n=——oco
With {¥,,} and {¥,} satisfying the prescribed conditions then

VSEH, f= W< ¥ f>. (8)

Note that in a special case {\iln} may represent a bi-orthogonal basis.
To use (8) it is necessary to acquire the dual frame which from (4)
can be found with the series
. 2 2 ,
¥, =—— -—T) ¥,
o2 () ©

along with good estimates of the frame bounds A and B. The series
in (9) is guaranteed to converge by virtue of its development and the
tighter the frame the faster the convergence [3].

In the special case of the Gabor expansion the frame elements are
generated from the translation and modulation relation

Ipq(2) = g(z — q)e'™ (10)

and the “mother” function
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Fig. 2. (a) Original FM-chirp waveform. (b) Reconstructed FM-chirp wave-
form. (c) Gabor phase space for FM-chirp waveform. (d) Gabor phase space
contour for FM-chirp waveform.

Similarly, once the dual frame mother function is known, all the dual
frame elements can be generated from the translation and modulation
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(b
(a) SAR image of ship at X-band, VV-polarization (see text). (b) SAR
image of ship wake at C-Band, VV-polarization (see text).

Fig. 3.

relation

e (12)
If the indexes of (p.q) are restricted to the discrete sublattice
(mpo.ng,) with po.qo > 0, pogo < 2, the validity of (8) is
maintained. Note that the case p,g, = 27 corresponds to the Nyquist
sampling criteria, and causes singularities in (9) which lead to poor
convergence properties. Furthermore, {¢,... } will no longer constitute
a frame for this limiting case [3]. Consequently, some oversampling
is required for useful application. Daubechies [3] has estimated
the frame bounds A and B quite accurately for a range of lattice
parameters po, qo from which particular values were chosen for use
in this work. Specifically, a snug frame is used with frame bounds
A = 3.854 and B = 4.147, and oversampling pogo = 7/2; ¢o = 1.
Selected elements from the Gabor frame and the dual Gabor frame
corresponding to these parameters are illustrated in Figs. 1(a), (b).

.‘}pq(-l') = F]('l - Q)f

B. FM Chirp Waveform

Figs. 2(a)~(d) show the Gabor expansion representation of a
pulse modulated FM-chirp waveform. Fig. 2(a) shows the original
waveform, and Fig. 2(b) shows the Gabor expansion of the original
waveform. The reconstruction uses 1369 terms to yield 99.97% of
the original waveform power. Clearly, less terms are permissive for
“good” reconstruction. Note the presence of the Gibb’s phenomena
primarily on the high frequency side of the waveform. Figs. 2(c),
(d) show the Gabor phase space representation of this waveform
illustrating the dominant coefficients produced by the inner product in
(8). The “pluming” structure best shown in Fig. 2(d) is an interesting
result because it illustrates the time evolution of the waveform’s
frequency content.
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Fig. 4. (a) SAR ship image azimuth cut (original and reconstructed). (b)
Gabor phase space contour of SAR ship image azimuth cut.

III. SAR OCEAN IMAGE DECOMPOSITION

In this section the Gabor expansion representation is investigated
for azimuth cuts of the two SAR ocean images shown in Figs. 3(a),
(b). The images were provided by the Naval Air Development Center
(NADC) SAR image processing facility from experiments conducted
off the east coast of the U. S. during the summer and fall of 1988.
The image shown in Fig. 3(a) was formed from X-band data collected
at VV polarization. The bright central region is a ship target of
opportunity over which an azimuth cut was chosen for expansion.
The image shown in Fig. 3(b) was formed from C-band data collected
at VV polarization. The dominant features represent a ship wake torn
from conflicting velocity fields present on the ocean surface. The
lower edge contains high image intensity activity over which a second
azimuth cut was chosen for expansion. For both images the pixel sizes
are (range, azimuth) = (2.5, 2.16) m.

A. Representation and Reconstruction

The ship image azimuth cut selected from Fig. 3(a) along with the
corresponding Gabor expansion representation is shown in Fig. 4(a)
for the parameters given in Section II.A. The reconstructed waveform
superimposed as a dotted line over the original uses 1681 terms to
yield 99.79% of the original power. Fig. 4(b) shows a subsection of
the corresponding Gabor phase space, illustrating the localization of
the dominant coefficients produced by the inner product in (8).

The ship wake image azimuth cut selected from Fig. 3(b) along
with the corresponding Gabor expansion representation is shown in
Fig. 5(a) for the parameters given in Section ILA. The reconstructed
waveform superimposed as a dotted line over the original uses
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Fig. 5. (a) SAR ship wake image azimuth cut (original and reconstructed).
(b) Gabor phase space contour of SAR ship wake image azimuth cut.

2849 terms to yield 98.61% of the original power. Note that in
this case the azimuth cut expanded is > 2.5 times the length
of the azimuth cut for the ship in Fig. 4. Fig. 5(b) shows a
subsection of the corresponding Gabor phase space, illustrating the
localization of the dominant coefficients produced by the inner
product in (8).

B. Filtered Reconstruction

Using the information provided by the Gabor phase space repre-
sentation shown in Figs. 4(b) and 5(b), the image reconstruction can
easily be limited to the dominant frame contributions. With this in
mind and first referring to Fig. 4(b), two filtered image cuts of the
ship response have been constructed and are shown in Fig. 6(a).
The DC-only response {(m,n) = (0.—5...5)} , and the DC-
plus first three harmonics response {(m.n) = (-3...3.-5...3)}
are shown superimposed over the original expanded azimuth cut of
Fig. 4(a). The DC-only filtered cut uses 11 terms and represents
43.94% of the original waveform power, and the DC-plus first
three harmonics filtered cut uses 77 terms and represents 79.11%
of the original waveform power. In both cases the ship envelope is
preserved and the desired level of detail can be selected based on
the application.

Referring to Fig. 5(b), two filtered image cuts of the ship wake
response have been constructed and are shown in Fig. 6(b). The DC-
only response {(m.n) = (0,—38...38)}, and the DC-plus first
harmonic response {(m.n) = (=1...1,-38...38)} are shown
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Fig. 6. (a) Filtered SAR ship image azimuth cut (see text). (b) filtered SAR

ship wake image azimuth cut (see text).

superimposed over the original expanded azimuth cut of Fig. 5(a).
The DC-only filtered cut uses 77 terms and represents 52.92% of
the original waveform power, and the DC-plus first harmonic filtered
cut uses 231 terms and represents 79.11% of the original waveform
power. As in the filtered ship azimuth cut, the wake scattering
envelope is also preserved in both cases.

1V. CONCLUSION

The Gabor expansion of SAR returns has been investigated and
shown to provide an alternate representation of localized space-
wavenumber information. This effort has demonstrated that a simple
and numerically tractable procedure for the analysis of geophysical
data is available through the use of the dual frame. After numerically
constructing the dual frame mother function goo(.r), the formula-
tion of the dual frame is straightforward through translation and
modulation.

The phase space representation of a signal is very important in
illustrating the space or time evolution of a waveform’s frequency
content. It is analogous to the sliding window Fourier transform
in that the window position and frequency content correspond to
the concept of the phase space lattice (nip..ng,) density inherent
in the Gabor frame. The Gabor expansion and ultimate choice of
the pogo product produce a unique phase space waveform sig-
nature which is simultaneously localized in both space and fre-
quency.

To demonstrate the physical insight afforded by the Gabor phase
space, an FM-chirp waveform was expanded. Fig. 2(c), (d) shows a
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distinct “pluming” of the coefficients illustrating the time evolution
of the waveform’s frequency content.

Filtering in Gabor space also provides a useful tool for gracefully
reducing, not “cropping”, high frequency information and also pre-
serves image features. This has been clearly shown for the SAR image
cuts that have been analyzed. The filtering is successful at removing
speckle while still preserving the scattering envelope of the ship and
wake features.

Classical tools for analysis are not that unlike the tools used here.
The Gabor expansion, in a sense, represents a limiting case of the
sliding window Fourier transform for optimum time-frequency or
space-wavenumber localization. The cost paid for the optimum local-
ization is oversampling and perhaps higher computational overhead
resulting from the construction of the dual frame. The increase in the
sampling rate results in tighter frames that allow the determination
of the dual frame from the series in (9) to converge more quickly.
From these considerations the ultimate utility of the Gabor expan-
sion, when compared to classical techniques, is application driven.
The Gabor frame is only one of the many frame representations
available for waveform analysis. The literature is rich with other
candidates known as wavelets which offer a nonuniform lattice
in phase space. These candidates will be investigated in future
work.
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