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HAREM experiment data suggest a new line of research for
fisheries management and the survey of marine surface life, in
particular, for cetaceans and pelagic fish. Aiborne SAR could be
more effective than any other monitoring technique, considering the
large covered area, the noninfluence of clouds and the independence
of the method facing of the fishery context. Now a large body of
data on the geometric properties and radiometric signatures of these
surface features should be collected during future aerial experiments
and satellite simulations or actual satellite acquisitions (ERS 1), under
a variety of wind, surface wave, and radar illumination and spectral
band conditions. The next step is to improve the knowledge of the
relationship between the schools’ or nets’ density and the radar image
clues which would lead to conversion of schools or nets sensing into,
respectively, abundance or fishing effort estimates, one of the major
goals in halieutic surveys.
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SAR Ocean Image Representation Using Wavelets

Joseph G. Teti, Jr. and H. N. Kritikos

Abstract— The utility of wavelet analysis as a tool for geophysical
research is examined using both continuous and discrete versions of the
wavelet transform. In both cases, waveform decomposition and recon-
struction is possible using somewhat different computational procedures.
The theoretical background of each procedure is briefly described and
applied using a specific “wavelet.” The wavelet used is based on a
Gaussian function, and provides simultaneous time-frequency (or space-
wavenumber) localization that meets the lower limit of the uncertainty
principle. A representation of this type is ideally suited for the analysis
of waveforms that arise from nonstationary processes. The properties
of wavelet analysis are examined by expanding an FM-chirp waveform,
and azimuth cuts taken from two different SAR ocean images. The
performance and ease of implementation are compared for the continuous
and discrete formulations, and the effects of filtering in wavelet phase
space using the discrete case are also examined.
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HE wavelet concept was first introduced to the engineering
community by Morlet [7] for use in the representation of
seismic data. Recently, the underlying theory has been formalized
primarily by Daubechies [3]. A number of researchers have recently
exposed many of the properties and potential applications for wavelet
analysis [2], [5], [9]. The continuous wavelet transform can impose
some troublesome characteristics for many applications, some of
which are examined here. The discrete wavelet transform overcomes
many of the shortcomings of the continuous version, however, the
reconstruction algorithms are quite different.
Through the use of the “frame” concept Daubechies has developed
a generalized theory which encompasses the discrete versions of both
the Weyl—Heisenberg and the affine or wavelet cases of waveform
representation [3]. A subset of each of these cases involves a
decomposition and reconstruction on frames which are formulated
with simultaneous time-frequency (space-wavenumber) localization.
The advantages of decomposition and reconstruction with both time
and frequency localization have been of interest to the remote
sensing community for quite some time. Such examples include
transient analysis of lightning [6], analysis of seismic data [7], SAR
ocean image decomposition and filtered reconstruction for speckle
reduction and feature extraction [8], etc. The condition of time-
frequency localization in the Weyl-Heisenberg case results in the
Gabor expansion which has been discussed in [2], (3], and further
investigated and applied in [8]. The Gabor expansion uses a set
of translated and modulated Gaussian functions as its frame, and
produces a uniformly spaced lattice in phase space [3], [8]. The
condition of time-frequency localization in the affine or wavelet case
results in a wavelet expansion which uses Morlet’s wavelet 3], (7).
Morlet’s wavelet is also based on a Gaussian and was the result
of extending Gabor’s basic idea for more efficient representation of
seismic data [7]. The corresponding wavelet expansion uses a set of
translated and dilated (or contracted) modulated Gaussian functions
as its frame, and produces a phase space lattice which is log-uniform
in time and logarithmic in frequency. The details of this phase space
are discussed in [3] and are also presented here. An analysis tool
having the properties described can provide a numerically efficient
representation of many types of geophysical phenomena. Also of
interest in this work is the filtered reconstruction of SAR ocean image
features through the use of the phase space information associated
with the discrete wavelet transform. The format of this paper closely
follows [8], and the subject waveforms studied here are the same as
those studied in [8] to allow direct comparison. To appreciate the
use of the discrete wavelet transform, some knowledge of frames
is required and a brief development is presented. A more detailed
discussion on frames is given by Young [10].

INTRODUCTION

II. THEORETICAL PRELIMINARIES

A. The Continuous Wavelet Transform

For finite energy functions f € L?(R), the continuous wavelet
transform F proposed by Morlet {7] is defined as

F(a.b) = ﬁ />C g'(Ar_ b)f(.r)dr
al J -

a

where g*(r) is the complex conjugate of a particular wavelet
“mother” function ¢(r), and (a.b) € R.a # 0. The form of
the wavelet transform is called continuous because the dilation and
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translation scale space parameters (a.b) vary continuously. The
wavelets are defined by translating and dilating the function g(x) as

1 r—>
. 2
= o(=) @
To recover f from its wavelet transform the mother function g(x)
must satisfy the admissibility condition

gab'(-r) =

g = 27r/ dk k|7 gk < 3)

where g(k) = \/‘27 = g(x)e'** dx is the Fourier transform of

g(r). The condition also implicitly requires that g(r) have zero mean
[2]. Using (3) with (1) the waveform f can be reconstructed from
its wavelet transform by

1 1 r—>b\dadb
f(l)—z//F((l-b)ﬁg( P ) a2 “4)

From (4) it is clear that the continuous wavelet transform is straight-
forward to use, but it will be shown to be computationally intensive
and difficult to apply in some situations. This will be discussed further
in later sections.

B. The Discrete Wavelet Transform

To properly address the discrete wavelet transform the concept of a
“frame” must be introduced. A sequence {v,;n € J, a denumerable
set} in L?(R) defines a frame if there exists numbers A,B > 0
such that

VieLHR). AP <Y lwa. HF < BIAIP )
where A, B are called the frame bounds. If A = B the frame is tight,
if A ~ B the frame is said to be snug. The frame definition given
by (5) may be expressed for unit norm functions as

A1<T< Bl (6)

where 1 is the identity operator, and the operator T is given by
T= ) va(tue) ™M
Since A.B > 0, the inverse of the T operator exists and satisfies
the relation
1

_1 1
—B‘IS(T) SZ]L ®)

Therefore, it then follows that functions {¢, } may be defined as
v 2T, ©)

and constitute a “dual” frame with frame bounds 4™, B™' > 0.
With {¢'»} and {¢} then

Vf e L*(R). (10)

£ =3 Gt
To use (10) it is necessary to acquire the dual frame which from (6)
can be found with the series

e 2y (1o 2 1)
T AvB & A+B )"

along with good estimates of the frame bounds A and B [1], [3]. The
series in (11) is guaranteed to converge by virtue of its development
and the tighter the frame the faster the convergence.

The phase space indices defined by the wavelet parameters (a.b)
may be discretized for frame representation by choosing the dilation

i
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parameter a = £a]'.a, > 1 and translation parameter b = nboal,
where here J = {(m.n)im.n € Z, the set of integers}. There
is considerable flexibility in the selection of the lattice parameters
(@to.b,), but a judicious choice can simplify implementation. The
corresponding family of discretely labeled wavelets are given by

m

gin(.l') =ag ? g(xa; " —nb,). (12)

In order to make use of (10), the dual frame in (11) must be
determined. The ease at which this can be done depends upon the
snugness of the frame. To provide an additional parameter to adjust
the snugness of the frame while maintaining good time-frequency
resolution, the concept of “voices” must be introduced [3], [7]. Thus,
several wavelet mother functions { g Mx); A=0,...,N — 1} where
N is the total number of voices are needed for application. In practice,
the mother functions are chosen to be related through dilation and
are given by

A A

N g(ao N .I‘)_

(13)

The choice of N affects the density of the phase space lattice since
the final lattice becomes the superposition of N lattices (i.e., one for
each mother function).

Note that unlike the original frame, a single dual frame mother
function does not exist in the same sense. The dual frame elements
cannot be generated by translates and dilates of a single (or V') mother
function(s) because the T operator defined by (7) does not commute
with the translation operation in (12) [3], [5]. Construction of the
dual frame elements requires a great deal of computational overhead
unless the frame is extremely snug, and (11) can be approximated
with only the & = 0 term.

M) = ao

C. The Morlet Wavelet and Discrete Phase Space

For both the continuous and discrete analyses, Morlet’s wavelet is
used to realize time-frequency localization that meets the lower limit
of the uncertainty principle. The mother wavelet is the modulated
Gaussian given by

z2

k3 (14)

8
[

gley=rm %(97‘” —e T )e

ﬁ;. Application of the discrete wavelet transform
requires additional information about the frame. Daubechies [3] has
estimated the frame bounds A and B quite accurately for a range of
lattice parameters (a..b,) and number of voices N, from which the
values (ao.b,) = (2.1) and N = 4 have been selected for use here.
These parameters with (14) result in an extremely snug frame with
frame bounds A = 6.918 and B = 6.923 [3], i.e., A = B, and the
dual frame is extremely well approximated by the k = 0 term in (11).

The phase space lattice for N = 4 voices is shown in Fig. 1.
Note the decrease in time sample spacing for increasing frequency in
packets of N = 4. Fig. 1 illustrates that wavelet analysis is not DC-
coupled; i.e., no waveform information is mapped precisely centered
around DC.

where v = 7

D. FM Chirp Waveform

The continuous wavelet transform representation of a pulse mod-
ulated FM-chirp waveform is shown in Fig. 2. Fig. 2(a) shows the
original DC-coupled waveform superimposed over the reconstructed
waveform. Notice the DC bias in the reconstruction resulting from
the DC present in the original waveform. If the DC is removed
from the original waveform the bias in the reconstruction essentially
vanishes, as shown in Fig. 2(b). For both reconstructions the scale
space parameters are varied in a pseudocontinuous fashion as {0.15 <
a < 75:6a = 0.15} and {-30 < b < 30:6b = 1.0}. Each



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 30, NO. 5, SEPTEMBER 1992

4 -
E1 I DU
eI ITITITitItitITiTLnitI

u I A A O A

g H é 3 H H % H i

o

) 112

” s ¢ 2 e 2 g 2

SRR NS S S S S-S S A

R S : DIz
P ceesemee DD ]
4 ]
-4 -3 -2 -1 0 1 2 3 4

x(mn) ; -32<n<32
Fig. 1. Discrete phase space lattice for N = 4 voices where k(m) = £a; ™

and x(m, n) = nbgay".

reconstruction uses 30 500 terms and for the result in Fig. 2(b),
99.74% of the original waveform power is recovered. Fig. 2(c)
shows the corresponding scale space signature. The differences in
the reconstruction performance between Figs. 2(a) and (b) show the
sensitivity of continuous wavelet analysis to recovering DC even for
the large range and high resolution of the phase space parameters
used. Consequently, further continuous analysis will only be applied
to “DC-removed” waveforms.

The discrete wavelet transform representation is now applied to
the same DC-coupled pulse modulated FM-chirp waveform shown in
Fig. 2(a). Fig. 3(a) shows the reconstructed waveform and illustrates
that the DC present in the original waveform poses no trouble for
the discrete analysis to recover. The discrete reconstruction uses
{2 < m < 11,-18 < n < 18} (4144 terms) to yield 99.92%
of the original waveform power. Less terms are permissive for good
reconstruction. Fig. 3(b) shows the discrete wavelet phase space
representation of this waveform illustrating the dominant coefficients
produced by the inner product in (10).

III. SAR OCEAN IMAGE REPRESENTATION

In this section, wavelet analysis is used for the representation
of azimuth cuts taken from two different SAR ocean images. The
azimuth cuts used are the same as those analyzed in [8]. The first
azimuth cut is taken across a ship target of opportunity observed in
an X-band image formed from data collected at VV polarization.
The second azimuth cut is taken across a ship wake torn from
conflicting velocity fields observed in a C'-band image formed at
VV polarization.

A. Continuous Wavelet Analysis

The ship image azimuth cut selected is shown in Fig. 4(a) with
the DC content removed, and Fig. 4(b) shows the continuous re-
construction. The scale space parameters used for the reconstruction
are varied over the reduced range in a pseudocontinuous fashion
as {0.15 < a < 30;6a = 0.15} and {-10 < b < 10;6b =
1.0}. The reconstruction uses 4200 terms to recover 90.35% of the
original waveform power. The performance of the reconstruction
is primarily limited by the high frequency cut off associated with
the sampling rate and dilation parameter which causes aliasing.
Increasing the range of the scale space parameters without increasing
the translation parameter resolution 6b, and accordingly the ordinate
axis resolution (0.1 is used) of the waveform, quickly destabilizes
the Teconstruction. The instability is believed to be caused by the
difficulty in approximating the integrations at fine scales through
both the decomposition and reconstruction which requires smaller
6b. A better reconstruction was not pursued because it would require
increasing the number of terms well beyond the 4200 terms used. The
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Fig. 2. (a) Original (- - -) and reconstructed (—) DC- coupled FM-chirp

waveform. (b) Original (- - -) and reconstructed (—) DC-removed FM-chirp
waveform. (c) Continuous scale space contour for the reconstruction in 2(b).

sensitivity of the reconstruction performance to the characteristics of
the scale space parameters and the subject waveform’s resolution and
frequency content is further illustrated by the continuous analysis of
the ship wake SAR image azimuth cut.

Fig. 5(a) shows the original DC-removed ship wake image azimuth
cut and Fig. 5(b) shows the continuous reconstruction. The character-
istics of the phase space parameters are the same as those used for the
ship image azimuth cut reconstruction in Fig. 4(b). The reconstruction
for ship wake azimuth cut is highly unstable for the reasons previously
discussed. It is conjectured that there is additional aliasing responsible
for the relative degradation in the reconstruction of Figs. 4(b) and 5(b)
because of additional high frequency information present in the ship
wake image azimuth cut (compare Figs. 4(a) and 5(a)).

B. Discrete Wavelet Analysis’

The discrete wavelet reconstruction of the original ship image
azimuth cut shown in Fig. 4(a) with the DC content removed is
shown in Fig. 6(a) (superimposed as a dotted line over the original)
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Fig.3. (a)Reconstructed FM-chirp waveform (discrete analysis). (b) Wavelet
phase space contour for the reconstruction in (a).

for the parameters given in Section IL.C. The reconstructed waveform
is nearly identical and uses {-2 < m < 12,-20 < n < 20}
(4920 terms) to recover 97.21% of the power. Fig. 6(b) shows a
subsection of the corresponding phase space signature, illustrating
the localization of the dominant coefficients produced by the inner
product in (10).

Similarly, the discrete wavelet reconstruction of the original ship
wake image azimuth cut from Fig. 5(a) is shown in Fig. 7(a)
(superimposed as a dotted line over the original) for the parameters
given in Section IL.C. The reconstructed waveform is of very good
quality and uses {-2 < m < 12,—40 < n < 40} (9720 terms)
to yield 90.12% of the original power. Note that in this case, the
azimuth cut expanded is twice the length of the ship azimuth cut,
and accounts for the relatively larger number of terms used in the
reconstruction. Fig. 7(b) shows a subsection of the corresponding
phase space signature, illustrating the localization of the dominant
coefficients produced by the inner product in (10).

C. Filtered Reconstruction Using Discrete Wavelet Analysis

Unlike continuous wavelet analysis, discrete wavelet analysis can
be readily used for filtering purposes. This can be realized through
limiting the reconstruction to only include dominant frame contribu-
tions from the inner product in (10). Note that since wavelet analysis
is not DC coupled, low pass filtering does not apply. Filtering can
only be band pass with an extremely low frequency cut off possible.
Referring to Fig. 6, two filtered image cuts of the ship response have
been constructed and are shown in Fig. 8. A narrowband response
and a more detailed wideband response are shown superimposed
over the original reconstruction from Fig. 6(a). The narrowband
filtered cut uses 200 terms and represents 52.60% of the original
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Fig. 4. (a) Original SAR ship image azimuth cut. (b) Reconstructed SAR
ship image azimuth cut (continuous analysis).

waveform power, and the more detailed filtered cut uses 320 terms
and represents 65.23% of the original waveform power. Note that the
ship scattering envelope is preserved in both cases.

Referring to Fig. 7, two filtered image cuts of the ship wake
response have been constructed and are shown in Fig. 9. A nar-
rowband response and a more detailed wideband response are shown
superimposed over the original reconstruction from Fig. 7(a). The
narrowband filtered cut uses 1512 terms and represents 65.47% of
the original waveform power, and the more detailed filtered cut uses
2016 terms and represents 81.58% of the original waveform power.
Similar to the filtered ship image azimuth cuts, the scattering envelope
of the ship wake is preserved in both cases.

TIV. CONCLUSIONS

The utility of wavelet analysis for SAR ocean image representation
has been examined using both continuous and discrete versions of
the wavelet transform. The theoretical background of each procedure
was briefly described and applied using a modulated gaussian mother
wavelet to provide time-frequency (or space-wavenumber) localiza-
tion that meets the lower of the uncertainty principle. The properties
of each formulation have been examined by expanding an FM-chirp
waveform, and azimuth cuts taken from two different SAR ocean
images.

The performance in reconstructing the FM chirp waveform illus-
trated the sensitivity of the continuous analysis to recover the DC
content of the subject waveform. The discrete analysis did not have
difficulty recovering DC information. Consequently, the subsequent
continuous analysis performed on SAR ocean image azimuth cuts was
only applied to the DC-removed version of the waveforms. Additional
difficulties were encountered in the appropriate selection of the
pseudocontinuous phase space parameters. The SAR ocean image
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Fig. 5. (a) Original SAR ship wake image azimuth cut. (b) Reconstructed
SAR ship wake image azimuth cut (continuous analysis).

cut reconstructions for the continuous analysis show signs of aliasing
which resulted from the combination of the subject waveform’s high
frequency content and the resolution of the continuous reconstruction
parameters. Here again, the discrete formulation did not encounter the
same difficulties and extremely stable and high quality reconstructions
were realized. Note that a significant computational difficulty in
performing the discrete analysis was avoided by the selection of
an extremely snug frame. The snug frame allowed the dual frame
elements from (10) to be approximated by the & = 0 term.

The phase space signature provided by the discrete wavelet analysis
proved to be very useful for performing filtering. The reconstruction
uses a unique phase space signature which is localized at the lattice
points (time, frequency) = (nboay’. Lag ™) for each voice. With the
reconstruction being limited to dominant frame contributions, filtering
is performed which gracefully reduces high frequency information
while still preserving image features. This has been clearly shown
for the SAR image cuts that have been analyzed. The filtering is
successful at removing speckle while still preserving the scattering
envelope of the ship and wake features. This property is a conse-
quence of the time or space translation step being smaller for higher
frequencies (corresponding to m < 0), and allows discrete wavelet
analysis to zoom in on sharp edges or discontinuities (singularities)
that may be present. Continuous wavelet analysis also possesses
the same properties but they are much more difficult to exploit for
application. The continuous analysis phase space signature does not
allow filtering to be easily performed.

This work has exposed many of the properties of wavelet analysis
and in particular the usefulness of the discrete wavelet transform
for geophysical research. The affine or wavelet coherent frame used
here along with the Weyl-Heisenberg coherent frame applied in [8]
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Fig. 6. (a) Reconstructed SAR ship image azimuth cut (discrete analysis).
(b) Phase space contour for the reconstruction in (a).
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together make up a pair of numerically tractable and robust analysis
tools for nonstationary processes. High level applications utilizing
both types of coherent frames for feature extraction and identification
are interest areas of future research.
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Thickness Profiling of Freshwater Ice
Using a Millimeter-Wave FM-CW Radar

Norbert E. Yankielun, Steven A. Arcone, and Robert K. Crane

Abstract— A prototype broadband millimeter wave (26.5 to 40 GHz)
FM-CW radar employing digital signal processing techniques has been
developed for profiling the thickness of freshwater ice. The radar was
tested at elevations of up to 7 m above ice surfaces and at speeds up to 40
km/h both from a surface vehicle and a helicopter. The thickness of pond
and river ice sheets between 3 and 35 cm thick with and without fresh
snow cover and minimal surface roughness showed direct correlation with
borehole thickness measurements. Losses due to volume scattering by
imbedded air bubbles did not significantly affect system capability to
discern the air/ice and ice/water scattering boundaries.

I. INTRODUCTION

Obtaining real-time, rapid and high resolution freshwater ice thick-
ness profiles over large expanses of frozen freshwater bodies has
wide application and utility. A device able to insure the safety of
personnel and the ability of vehicles to traverse frozen bodies of
water would have tactical, strategic, commercial, and recreational
applications. Specifically, an ability to measure ice thickness in the
range of 3 or more cm is addressed in this discussion.

There has been considerable effort placed on the development and
application of radar for geophysical profiling of ground, sea ice and
freshwater ice for at least the last 25 years as reviewed by Wills [1],
Riek et al. [2], and Page and Ramseier [3]. The majority of the effort,
to date, has been with impulse radar at frequencies less than 1 GHz
with an ability to resolve ice thicknesses in the range of 10 to 20 cm
[2]-[5]. Microwave approaches have also tried the impulse technique
to reach about the same resolution [6]. As unsafe conditions occur
generally at less than 10 cm, there is a need for higher resolution
and therefore, a shorter pulse. Since impulse generation at mmw
frequencies is not yet conveniently available, the spread spectrum
technique of FM-CW is then investigated.

The FM-CW technique has been applied at X -band to measure
freshwater ice thicknesses down to 14 or 15 cm [7], for geophysical
remote sensing applications at 8 to 12 GHz [8] and for snow
stratification investigations at 8 to 12 GHz [9], [10]. To date, no
profiling radar measurements of ice thickness less than 10 cm
have been reported. Here we discuss a prototype FM-CW radar
operating in the 26.5-40 GHz frequency range that fulfills this task.
Propagation in freshwater ice has not been found to be a limitation
and scan generation at reasonable profiling speeds is possible with
this technique.
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